
Monte Carlo Ray Tracer
TNCG15 Advanced Global Illumination and Rendering

Anna Wästling (annwa917)

Jessie Chow (jesch310)

January 4, 2022

Abstract

This report presents the implementation of a Monte Carlo Ray Tracer in C++. A scene with

six walls, a ceiling, floor, a tetrahedron and a sphere have been rendered as a result. The

scene contains different materials which results in phenomenons like color bleeding and

soft shadows and different reflections. A discussion about the result is presented at the end

of the report.

Table of Contents

1 Introduction 1

1.1 Global Illumination . 1

1.2 Ray Tracing . 2

1.2.1 Whitted Ray Tracer . 2

1.2.2 Monte Carlo Ray Tracer . 3

2 Background 4

2.1 Scene . 4

2.2 Ray . 5

2.2.1 Ray Intersection . 6

2.3 Illumination . 7

2.3.1 Direct Illumination . 8

2.3.2 Indirect Illumination . 8

2.4 Reflection Models . 9

2.4.1 Diffuse Reflection . 9

2.4.2 Mirror Reflection . 9

3 Results 10

4 Discussion 15

References 17

List of Figures

2.1 The scene with a hexagonal shape. The scene from the top is shown to the

left and the scene from the side is shown to the right. 4

2.2 Three rays are sent through a pixel at different points towards the scene . . 6

2.3 Shadow ray that hits the area under a tetrahedron 8

3.1 The scene rendered with 8 rays and 4 shadow rays 10

3.2 Soft shadows . 11

3.3 Color bleed where the red colour from the wall is reflected onto the white

floor . 11

3.4 Renders of the scene with different number of rays per pixel and four

shadow rays . 12

3.5 Zoom in on the rendering results of the scene with 1 ray per pixel and

different number of shadow rays . 13

3.6 Artefacts on the purple and pink walls, circled in red 14

1. Introduction

The aim of 3D computer rendering is to create a photorealistic image using data sets, pixels.

The process of producing a photorealistic rendering is difficult because there are many

elements to take into consideration, where the most central one is the light. Light has

different properties depending on if it is direct light i.e. light that comes directly from the

light source or indirect light i.e. if it is reflected off objects in the scene. A method to model

the light in a scene is global illumination.

1.1 Global Illumination

Global illumination models both the direct light from the lightsource and the indirect light

that is reflected off objects. As the light is reflected off an object, the colour of the object

will be reflected onto the next surface that is hit by the light in an effect called colour bleed.

In addition, light that is reflected off an object is diffused and will be softer when it hits

the next object, casting soft shadows. Achieving global illumination in 3D rendering is

challenging because light interacts differently with different reflection models. To describe

how the light, or radiance, is transported in the scene, the rendering equation (1.1) [1] is

used.

Ls(x,Ψr) = Le(x,Ψr) +

∫
Ω

fr(x,Ψi,Ψr)Li(x,Ψi)cosθi dωi (1.1)

where Ls is the surface radiance in the point x, Le is the emitted radiance by the surface,

which does not need to be calculated as it can be found through the definition of the surface.

The integral describes the radiance values in the scene and can be computed using ray

tracing.

1

1.2 Ray Tracing

Ray tracing is a method to simulate the light in a scene and is done by tracing a ray that

originates from the light source into the scene. The ray is traced as it bounces off different

objects in the scene until it hits the point it originated from. As the ray bounces around

in the scene and interacts with the objects, pixel values will be generated and results in a

rendered image. This method is called forward ray tracing. However, many of the rays

will not have any significant impact on the final render as they will not reach the viewpoint,

usually the camera. In order to guarantee that the rays is evenly distributed throughout the

scene, a large number of rays have to be used and will result in a computationally expensive

rendering process.

1.2.1 Whitted Ray Tracer

One of the first techniques to simulate light was described by Whitted in 1980 and is called

the Whitted Ray Tracing [2], which uses backward ray tracing. Instead of tracing rays that

originate from the light source, backward ray tracing traces rays that are shot from the

viewpoint, usually the camera. By tracing rays that originate from the viewpoint, it can be

assured that every ray will be seen. As the ray bounces in the scene, the pixel value will be

calculated based on the surfaces of the objects that the ray intersects. If the ray intersects

an object with a mirror surface, the ray will be reflected in a random direction since that is

the property of a mirror. To prevent a reflected ray from bouncing for an infinite number of

times, a limit on how many times a ray can bounce is introduced in the algorithm. On the

other hand, if the ray intersects an object with a diffuse surface, shadow rays will be sent

out from the intersection point towards the light source to check if the intersected point is

directly illuminated or if it is in shadow. Depending on how many shadow rays that hits an

object as they are shot towards the light source, the amount of illumination on that point

can be determined.

2

1.2.2 Monte Carlo Ray Tracer

While Whitted Ray Tracing can simulate transparent and specular (mirror) surfaces, it has

difficulties with simulating reflection between diffuse surfaces e.g. colour bleed and soft

shadows. A technique that covers the advantages of Whitted Ray Tracing and handles

reflection between diffuse surfaces is Monte Carlo Ray Tracing, described by Kajiya [1],

and is a way to solve the aforementioned rendering equation (1.1). The idea is to approximate

the integral part in the rendering equation by tracing a ray throughout the scene. Each ray is

set to recursively bounce a predetermined number of times to prevent a situation of the ray

bouncing infinitely between two mirror surfaces and also to make the rendering process

more effective. Another method that is used to terminate the rays is Russian Roulette.

When the ray intersects a surface, it will be determined of how the ray will be reflected

depending on the surface type, which is the same idea as in the Whitted Ray Tracing. The

difference is that a diffuse surface will reflect the ray into a random direction, which is

the indirect illumination part in global illumination. As the ray is reflected from a diffuse

surface, its intensity will be reduced which results in softer shadows. The reflected ray also

carries over the colour of the object in the intersection point and results in the effect colour

bleed.

3

2. Background

The ray tracer implemented in this project is a Monte Carlo style ray tracer where rays are

cast into the scene from the viewpoint and traced as it recursively bounces in the scene. The

ray returns a radiance value in the form of a color that will be used to render the resulting

image.

2.1 Scene

The most commonly used test scene in rendering is called the Cornell box [3] which is in

the shape of a cube, where the light source is positioned in the middle of the ceiling which

is white which is also the colour of the back wall and the floor. The basic Cornell box has

a red wall to the left and a green wall to the right. The purpose of the red and green walls

is to be able to see colour bleeding as the white coloured parts of the box will get a subtle

shade of green and red. With the differently coloured walls, the objects in the scene with

different reflection models can be tested to see if they are correctly implemented. In this

project however, the Cornell box will not be used. Instead, a scene with a hexagonal room

is used [4], see Figure 2.1.

Figure 2.1: The scene with a hexagonal shape. The scene from the top is shown to the left

and the scene from the side is shown to the right.

4

The scene has walls in different colours while the ceiling and floor are both white. The

walls, ceiling and floors are made of diffuse materials. The lightsource in the room is

centered in the ceiling. In this implementation, two objects of different materials are

present: a tetrahedron, which is a Lambertian (diffuse) reflector, and a sphere, which is a

perfect (mirror) reflector. The camera is placed in the middle of the room with two different

positions on the x-axis so that four of six walls can be seen directly while the remaining

two walls behind the camera can be seen through the reflection of the sphere.

2.2 Ray

The ray was constructed with a starting point, an endpoint, a direction, which was normalized,

and a color.

Two positions were defined for two different ”eyes” and is the starting position of the rays

that are cast into the scene through a pixel in the camera plane. As the ray hit a diffuse

surface, the endpoint was set to the intersection point between the ray and the surface and

the colour of the ray was set to the same color as the surface. By setting the a colour to the

ray, it will give an effect called colour bleed since the next point that is hit by the ray will

get some of the color from the previous surface. The ray bounces around in the scene until

it is terminated, which is determined by using a counter that increments every time a ray is

reflected. Once the counter hits a predetermined number, in this case the number was ten,

the ray is terminated.

Aliasing is unwanted patterns that can appear when undersampling. By sending more

rays into one pixel, see Figure 2.2, the average color of the pixel can be calculated and

aliasing is reduced. More rays gives more intersectionpoints in the scene which gives

a better approximation for the pixel. This was calculated in combination with the method

supersamling. Instead of intersecting a pixel at the same point the rays gets their intersection

point by using random displacement in the pixel. This contributes to a better and more

random distribution of the rays and therefore less aliasing. However, by using random

5

displacement samples can end up being too detailed in some areas whilst not detailed

enough in others.

Figure 2.2: Three rays are sent through a pixel at different points towards the scene

2.2.1 Ray Intersection

The ray could intersect with two kind of objects in the scene, a sphere or a triangle.

Triangles were not mentioned in section 2.1 but triangles were used to define the walls,

ceiling and floor of the scene as well as the tetrahedron which is made up of four triangles.

Therefore, there will only be two different intersection algorithms where one is for the

triangles and one for the sphere.

The Möller-Trumbone intersection algorithm (2.1) [5] was used to determine the intersection

point between a triangle in the scene and a ray. A ray intersects a triangle if the barycentric

coordinates (u,v) meets the conditions where u ≥ 0, v ≥ 0 and u+ v ≥ 1 [4].

T (u, v) = (1− u− v)v0 + u · v1 + v · v2 (2.1)

To calculate the intersection point between a sphere and a ray, an analytic solution [6] was

implemented. The ray is defined as (2.2) where O is the point of origin of the ray, D is the

direction of the ray and t is a point on the ray.

6

O + tD (2.2)

The sphere is defined as (2.3) in standard coordinates.

x2 + y2 + x2 = R2 (2.3)

where (x, y, z) are Carthesian coordinates of the center of a sphere in the origin that has

the radius R.

(x, y, z) is then substituted with (2.2) where the ray intersects the ray if (2.4) is true.

|O + tD|2 −R2 = 0 (2.4)

In order to determine the number of intersection points, the quadratic form of the equation

(2.5) is solved by x (2.6).

f(x) = ax2 + bx+ c (2.5)

x =
−b±

√
b2 − 4ac

2a
(2.6)

where the sign of the discriminant ∆ = b2 − 4ac determines the number of intersection

points as the following:

• ∆ ≥ 0 gives two roots which indicates that there are two intersection points between

the sphere and the ray.

• ∆ = 0 gives one root which indicates that the ray only has one intersection with the

sphere.

• ∆ < 0 gives that there are no roots and therefore the ray does not intersect the sphere.

2.3 Illumination

The distribution of light, both direct and indirect illumination, was calculated to create a

realistic scene.

7

2.3.1 Direct Illumination

A spherical object with radiance 1.0 Wm−2sr−1 was introduced in the scene to act as the

light source. It was positioned in the ceiling of the room with its normal direction towards

the floor.

To get the shadows of the objects in the scene, shadow rays were introduced. A shadow

ray was created with the starting point at the intersection point between the ray that was

cast from the eye and a surface, and was cast towards the light source. By checking if the

shadow ray hits any objects on its way to the light source, it can be determined if the point

is in the shadow of an object or if it is directly illuminated by the light source. An example

of a shadow ray that intersects a tetrahedron as it is cast from the floor towards the light

source can be seen in Figure 2.3. The more shadow rays that are computed, the softer the

shadow will be since there will be samples at different points below an object.

Figure 2.3: Shadow ray that hits the area under a tetrahedron

2.3.2 Indirect Illumination

To visualize the scattering of light in an realistic way, indirect illumination was computed

by redirecting the ray in a random direction when intersecting a diffuse surface. The ray is

8

recursively reflected until it is absorbed by the surface. One of the methods to determine

if the ray will be absorbed is Russian Roulette where 25% of the rays got terminated at

random. This was only done when hitting a diffuse surface like the walls, ceiling, floor or

the tetrahedron. To get the right amount of light in the scene, the radiance of the ray was

also reduced at each redirection.

2.4 Reflection Models

The scene had two different materials, diffuse and reflective. The sphere had a highly

reflective material while the tetrahedron, the walls, floor and ceiling had a diffuse material.

The reflection model of the two different materials were computed differently.

2.4.1 Diffuse Reflection

When shooting a ray towards the diffuse surfaces, direct illumination will be calculated and

added if certain conditions are met. The direct illumination will be computed only if the

intersection point on the diffuse surface is not in shadow. Meanwhile, indirect illumination

is always computed since the ray will always be reflected off a diffuse surface.

2.4.2 Mirror Reflection

A ray that intersects a reflective surface will be reflected off the surface using the normal

of the surface to calculate the reflected rays direction, creating a perfect reflection. This is

done by casting a new ray in the direction of the surface normal and applying the color of

the cast ray on the sphere.

9

3. Results

The Monte-Carlo ray tracer was implemented in C++ with the use of the OpenGL Math

library (GLM) to create vectors and mathematical equations. The size of the rendered

image is 800x800 pixels. The scene is a hexagonal room where the walls have different

colours and diffuse material. The objects in the scene is a tetrahedron with diffuse material

and a sphere with mirror material. The light source is located in the center of the ceiling

and has the side length 3. The rendering result of the scene using 8 rays per pixel and 4

shadow rays is shown in Figure 3.1.

Figure 3.1: The scene rendered with 8 rays and 4 shadow rays

10

A zoom in to show the soft shadows and colour bleed on the rendering results of 8 rays per

pixel and 4 shadow rays are presented in Figure 3.2 and Figure 3.3 respectively.

Figure 3.2: Soft shadows

Figure 3.3: Color bleed where the red colour from the wall is reflected onto the white floor

The rendering time of the scene with different number of rays per pixel (1, 2, 4 and 8 rays

per pixel) are presented in Table 3.1 and the rendering results are show in Figure 3.4.

11

Number of rays per pixel Render time (seconds) Render time (minutes)

1 91.10 1.52

2 364.99 6.07

4 1481.83 24.69

8 6033.97 100.56

Table 3.1: Rendering time for different number of rays per pixel on a desktop

(a) 1 ray (b) 2 rays

(c) 4 rays (d) 8 rays

Figure 3.4: Renders of the scene with different number of rays per pixel and four shadow

rays

12

To show the effect of different number of shadow rays, the scene was rendered with 1,

2, 4 and 8 shadow rays. The rendering time for the different number of shadow rays are

presented in Table 3.2. The rendering results are presented in Figure 3.5 where there is a

zoom in on the renders to show what effect different number of shadow rays have on the

shadow.

Number of shadow rays Render time (seconds) Render time (minutes)

1 149 2.48

2 158 2.63

4 164 2.73

8 219 3.65

Table 3.2: Rendering time for different number of shadow rays on a laptop

(a) 1 shadow ray (b) 2 shadow rays

(c) 4 shadow rays (d) 8 shadow rays

Figure 3.5: Zoom in on the rendering results of the scene with 1 ray per pixel and different

number of shadow rays

13

Some unknown artefacts on the walls, circled in red, can be seen in Figure 3.6.

Figure 3.6: Artefacts on the purple and pink walls, circled in red

14

4. Discussion

The results show that global illumination was achieved using Monte Carlo Ray Tracing

with soft shadow (Figure 3.2) and colour bleed (Figure 3.3) effects in the renders.

As the number of rays per pixel are increased in the renders, the quality of the render

increased where the renders with a higher number of rays per pixel are less noisy, which

can be best seen by comparing 1 ray per pixel (Figure 3.4a) and 8 rays per pixel (Figure

3.4d). However, the rendering time with a higher number of rays per pixel is significantly

increasing(Table 3.1). During the rendering process of the project, an attempt to render

with 16 rays per pixel was made but was eventually aborted since it would have taken an

estimated 400 minutes which is too much time. To reduce the computation time, multi-core

rendering or photon mapping can be implemented to speed up the process. Therefore, the

conclusion is that 8 rays per pixels results in the best image, since it has a good computation

time and has almost no noise.

Similar to how the computation time increased with a increasing number of rays per pixel,

the computation time for a higher number of shadow rays also increased (Table 3.2). The

difference in computation time could be due to different devices (desktop and laptop),

however, the computation time is increasing for both devices. Therefore, to render the

scene with different number of shadow rays, only one ray per pixel was used. The effect of

one shadow ray (Figure 3.5a) is a hard edge, and with two shadow rays (Figure 3.5b) the

soft shadow effect can be seen but it is not considered to be good. With four shadow rays

(Figure 3.5c), the soft shadow effect is significantly better and it becomes more realistic

with eight shadow rays (Figure 3.5d). However, as the computation time will increase with

the number of shadow rays, four shadow rays were used when rendering the scene with

different number of rays per pixel.

15

There are also some unknown artefacts on the walls, as seen in Figure 3.6. This can have

multiple reasons but the solution is for us unknown.

The result of using Monte Carlo ray tracing gives pretty good visualisation, however it

requires a lot of computational power and takes a long time to render. In this project

the render time could potentially become better by improving the code and make it more

efficient. Moreover, the computation time will be improved if the computer has better

specifications which can be seen when comparing the computation time of 1 ray per pixel

and 4 shadow rays rendered with a desktop (Table 3.1) and a laptop (Table 3.2).

16

References

[1] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph.,

20(4):143–150, August 1986.

[2] Turner Whitted. An improved illumination model for shaded display. In ACM

SIGGRAPH 2005 Courses, SIGGRAPH ’05, page 4–es, New York, NY, USA, 2005.

Association for Computing Machinery.

[3] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile.

Modeling the interaction of light between diffuse surfaces. SIGGRAPH Comput.

Graph., 18(3):213–222, January 1984.

[4] Mark E Dieckmann. Lecture 6 (”the scene”), 2021. Accessed: 2021-10-26.

[5] Tomas Möller and Ben Trumbore. Fast, minimum storage ray-triangle intersection. J.

Graph. Tools, 2(1):21–28, oct 1997.

[6] A minimal ray-tracer: Rendering simple shapes (sphere, cube, disk, plane, etc.).

https://www.scratchapixel.com/lessons/3d-basic-rendering/

minimal-ray-tracer-rendering-simple-shapes/

ray-sphere-intersection. Accessed: 2021-12-23.

17

https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection

	Introduction
	Global Illumination
	Ray Tracing
	Whitted Ray Tracer
	Monte Carlo Ray Tracer

	Background
	Scene
	Ray
	Ray Intersection

	Illumination
	Direct Illumination
	Indirect Illumination

	Reflection Models
	Diffuse Reflection
	Mirror Reflection

	Results
	Discussion
	References

